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The effect of a pressure gradient and of external flow turbulence on the nature r 
flow in the laminar, transition, and turbulent regions is investigated. 

i. The System of Equations 

Turbulent flow of an incompressible fluid in a boundary layer is described by a system 
of equations similar to that suggested by Kolmogorov [3] and investigated in detail by Glush- 
ko and Solopov [5-10]. The system consists of the Reynolds, continuity, turbulence energy, 
turbulence scaling, and heat-transfer equations: 
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Here u, v, and T are the average velocities and temperature: 9t and • t are the turbulent kin- 
ematic viscosity and thermal conductivity; D and m are the diffusion coefficient and :he dis- 
sipation of the turbulence energy: L = {2X is the integral scale of turbulence: and e :Ls the 
specific turbulence energy. The terms on the left-hand side of the transport equations (i)- 
(5) describe convective transport of the corresponding quantities. The corresponding terms 
on the right-hand side of (4), (5) describe diffusion of turbulence energy across the layer, 
energy input from the mean flow, and dissipation of pulsation energy. We point out that the 
term w(;X/~y) in the left-hand side of (5) combines the convective v(3X/~y) and the diffu- 
sion terms. 

2. Transport Coefficients 

The turbulent viscosity and thermal conductivity depend on the quantities e, L, 
3T/~y, and ~e/~y and are written in the form [5-10] 
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Here z and ~ are the dimensionless velocity gradient z =(L/c~e).(~u/~y), and turbulence energy, 
= (L/e)-(3e/~y); His an experimental function of the dimensionless distance to the wall: 

s y/e7~; sl : 30; s2 = 58, 

[ t, if t < 0.75, 
H (t) = ] t - -  (t - -  0,75) ~, if 0.75 ~< t ~< 1.25, 

(1, if L25<t. 
(9) 

The diffusion coefficient of turbulence energy is 

D = v ( 1 - t - 0 . 4 L V - e H ( - ~ 3 ) )  ; v  s a~300 .  

The dissipation of turbulence energy is written as follows: 
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The function ~(r) takes into account that m § 5~/4 as r § 0 and ~ § 0.4r as r § ~. Thus, 
= 0.4r for r > r~, while ~ = 5~/4 + br 2 for r < r,; b = 0.2/r~, rx = 25~/4, r = L~7~. 

Moreover, the function ~(t) in (5) can be approximated as follows: q~(t) = 0 for 0 ~ t ~ 0.5 
and q(t) = 6(t-- 0.5) a for 0.5 < t g i. 

3. Initial and Boundary Conditions 

The system (1)-(5) was solved for the following boundary conditions: 

y = 0 ;  u = v = e = L = = 0 ;  T = T  w. (12)  

A power-law velocity distribution and a constant temperature were assigned at the exterior 
limit of the boundary layer: 

y -+o  o; T---~T.; e--~e| i - - ~ i . ;  u--~u.; u .  =c.d n. (13) 

The intensity and turbulence scale of the outer flow were assigned at the initial point x(0) 
of the boundary layer [Rex(0) = I0r 

u2(O) -g- e| (O) ' uoL~ (O) 
. . . . .  500. (14) Uo Uo = 0.025; ReL v 

The energy and turbulence scale of the outer flow vary along x due to dissipation and con- 
vection: 

de. dZ. = 0.2 o)| (15) 
dx dx e 

The v e l o c i t y  d i s t r i b u t i o n  a c r o s s  t h e  b o u n d a r y  l a y e r  a t  t h e  i n i t i a l  p o i n t  x (0 )  i n t h e  l a m i n a r  
portion of flow was given for Re x = u~(0)x(0)/~ = 104 in the form u = u~'(m, n), where 
#(m, n) is the self-similar Falknez'-Skan solution [i, 2] for u~ = cx TM. The temperature, 
energy, and turbulence scale distributions at the point x(0) are similarly given by 

O-- T| Tw : ~ ' ( m ,  ~PrT); e=e |  L = L| ( ~ - )  . 

. 

(16) 

Method of Solution and Results 

The system of equations (1)-(5) was solved by the finite-difference method, first de- 
termini=g the velocities u(x + Ax, y) and v(x + Ax, y) from (I) and (2) and then solving 
the remaining equations. The step AY varied, since in the viscous sublayer the velocity 
profiles and those of other parameters vary quickly: u ~ ay + by2; 8 - Y; L ~ y; e ~ yn, while 
in the turbulent part the profiles of all parameters vary slowly: u - slog y + b. The cal- 
culation showed that in the viscous sublayer there are 5-10mesh points, while the number of 
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mesh points in y varied with increasing layer thickness from i00 to 350. 

Columns ii and 12 of Table 2 ~rovide the step Ax(m), corresponding to ARe x ~ Rex(m + 
l)A~/~, and the parameter P = A~/AY~in~bY means of which the stability range is usually 
estimated~ It is seen that the step Ax decreases with decreasing pressure-gradient parameter 
m. Fo! Ax = const, the calculation time increases proportionally to Re x. Increasing the 
step Ax, to retain the stability it is necessary to increase the step A~min; in this case 
it seems that for Re - 5.6 (m = 0) the width of the viscous sublayer becomes smaller than 
the step of the mesh~ This leads to a strong distortion ofthe velocity profiles and to a 
loss in stability and accuracy. It is possible that in this case one must replace the ve- 
locity profile in the viscous sublayer by its asymptotic value or to choose stretching co- 
ordinates taking into account the varying thickness of the viscous sub!ayer. 

In Figs. 1 and 2 we compare results of a numerical calculation of the local resistance 
Coefficient and of the Stanton number for u~ = cxm; m = 0; m = 0.iiii; m =-0.04762; m �9 
-- 0.08676 with theoretical solutions [I, 2] for the laminar portion and with semiempirical 
dependences [i, 2, 12, 13] for the turbulent portion: 

C/. lam: ~' 2rn -~--2 ~"  (0) l~e -~ Stlarn= K ( m ,  Pr )Re  -~  

c.f turb = 0.0592 Re -~  St.turb = 2 Pr ~- O. 11 (Pr - -  Pr~) . 
\ 

(17) 

(18) 

The location of the transition point depends on the pressure-gradlent parameter m, the in- 
tensity u'(0)/uo, the scale L(O)/xo of the external flow turbulence, and the location of the 
initial pointRex(0) in which external turbulence is introduced in the boundary layer, i.e., 
Recr = Recr[m , u-r(0), ~(0), Rex(O) ] . Table i (columns 2, 3, and 4) provides the values of 
(log Rex)er , Recr , Recr at the initial point of sharp transition from the laminar to the 

transition region, i.e., where cf starts increasing. In column 5 we give the segment length 
ARe* = Rear -- Re*(0) from the initial to the transition point. All values in Table i are 
given for various m, but identical values of 3'(0), ~(0), and Rex(0 ) according to (14), It 
is seen that the quantity (Rex)cr increases with increasing m. 

Comparing Rear of the transition (column 3) with the theoretical value of Re~ at the 
~oint o~stability loss of laminar self-similar flow (column 6), it is seen that for assigned 
u'(0), L(0), and Rex(O) the transition occurs after the neutral point for m E 0 and earlier 
than it for m = 0.1111. To realize m = 0.1111 we calculated the variant with external turbu- 
lence intensity ut(0) = 0.005 decreased by a factor of 5. The calculation was extended to 
Re x = lOT(Re * = 4000), i.e., beyond the neutral point (Re~ = 3200), but the transition point 
was not reached and the flow remained laminar. 

To study the effect of thelocation of the initial point Rex(0) for m = 0.iiii and exter- 
nal turbulence parameters (14) we checked the variant with initial point Rex(0 ) = 3,10 ~ in- 
stead of Rex(0) = i0 ~. It is seen from Figs. i and 2 (curves 7) that the further from the 
edge the plate is, or, stated differently, the closer to the neutral point the external ex- 
citation is introduced, the earlier the transition to the turbulent region starts. 

At the laminar portion the effect of external flow turbulence begins to practically af- 
fect the values of cf and St at the edge of the portion (particularly for m < 0; Figs. l 
and 2). In the turbulent portion the values of cf(m) and St(m) increase with increasing m 
(Figs. i and 2), but it is not possihle to separate the effects of pressure gradient and of 
external_ flow turbulence, since the calculations were performed for the same values of e--~(O) 
and I~(0). 

For all m we calculated the Reynolds similarity parameter S = 2St/cf and compared it 
with the theoretical dependences (17), (19), and (20). In Table 2 we provide the relative 
deviation of the calculated S C and the theoretical S T similarity parameter in percents, ~ = 
(S C -- ST)/S T. For the laminar portion of the flow the error E, % is given in column 6 of 
Table 2~in the numerator we give e at the beginning and in the denominator its value at the 
edge of the laminar portion). The large deviations of S C from S T at the beginning of uhe lam- 
inar portion are explained by deviations of the initial temperature profile from the self- 
similar one, in the middle of the laminar portion the error has decreased to -5%, and ~hen 
at the end of the laminar portion (for m =-0.08676), c increases to II% due to gradual devia- 
tion from the laminar regime (Figs. i and 2). 
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Fig. i. Local resistance coefficient of. Curves 1, 2, 3, 4, 
and 9 are for dependences of type (17), (18); curves 5, 6, 7, 
8, and i0 are calculations for-~'(0) = 0.025; Re L - 500. 
Curves i, 5) m = O; 3, 6, 7) m = 0.iiii; 4, 8) m = -0.04762; 
9, i0) m = --0.08676; 5, 6, 8, I0) the initial point Re(0) = 
104; 7) Re(0) = 3.10 ~. 

td~o ~. st) I I ! 

q2 i t 

o 11 " ~ L - - - -  

-O'Z~o0 2 4' 6 a g . 2 4 6 a 50 I ~ Re 
Fig. 2. The local Stanton number St. Curves I, 2, 3, 4, 8, and i0 
are theoretical dependences of type (17), (18); curves 5, 6, 7, 9, 
and ii are calculations. Curves I, 5) m = 0; 3, 6, 7) m-- 0.iiii; 
8, 9) m = --0.04762; i0, ii) m = -0.08676. Curves 5, 6, 9, ii) the 
initial point Re = 104; 7) Re = 3-104; i, 3, 8, 10) Stla m = 
K(m, Pr)Re-~ 2)St T = 0.5cfPr-2/s; 4) St T = 0.5cf[PrT+O.ll. 

(r (Pr -- Pr T) ]-~. 

For the turbulent portion the values of g, % are given in column 7 of Table 2 for Eq. 
(19) and in column 8 for Eq. (20). The beginning of the turbulent region appears in the nu- 
merator of c and its end appears in the denominator. The following dependences were veri- 
fled: 

Q --  Pr u~-+  
2St 

- 

Pr--22 Az Cf2 u~- 1 ' 

c--EC =~ Pr V/" _~ "q 

(19) 
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Here A = --0Uu~(du~/dx)/T~; a i = 1 + (kPr/Prt)/(T:/Zw)6~; i = 1,2; k = 0.4. 

Equation (19), derived [12] for Pr T = i and linear dependence of T(u) in the viscous 
sublayer, gives fairly good agreement with the calculations, except for the variant with 
negative pressure gradient (m = 0. iiii). Estimates show that in this case the thicknesses 

and A of the turbulent dynamic and thermal layers (column 9, Table 2) differ strongly. 
This is why Eq. (20), explicitly taking into account the difference between the thicknesses 
A and ~ of the thermal and dynamic layers and the difference between the thicknesses 6~ and 
d~ of the viscous dynamic and thermal sublayers, was suggested. In deriving (20, we applied 
the two-layer scheme for the velocity 0 < ~ < 6, and the three-layer scheme for temperature 
0 < ~ < ~ < A: 

v ds 
u + = y +  + A ~ ( y + ~ ;  T + = T + + u + P r ;  y < 6 ~ ;  A~ = 2pu3, "dx ' (21)  

T + T + §  Pr T ~ ~ In Pr~ _ _  ; 6 ~ 9 ~ 6 . ;  (23) 

T+=T~+ k V T ~  ; 6 2 < g ~ A -  (24) 

Here T + = T/T,; u + = u/u,; T, = qw/0CpU,; u, = ~V~w/O ; T: = T w + (dp/dx)~: is #he friction 
at the boundary of the viscous sublayer of thickness ~:. To include the effect of pressure 
gradient on the thickness of the viscous sublayer ~, it was suggested [14] that (6~/~)- 
T~r = ~ for = = 11.6. Equation (20) is valid for ~: < 6a, and putting 6 = A, 6~ 62, 
TI = Tw, and dp/dx = 0 in (20), the well-known behavior--of the Reynolds similarity parameter 
[i, 2] is obtained. 

Figures 3 and 4 show the dimensionless velocity and temperature profiles compared with 
semiempirical dependences for a viscous sublayer and logarithmic portion: 

u + = 5.61gy + + 4.9; u + = 5.751gy + -~ 5.5; (25) 

0 + = 4 . 7 1 g y + + 4 . 6 ;  6 ~ = u ~ = ~ ;  ~ = 1 1 . 6 .  (26) 

Here the experimental dependence of 0 + is taken from [ii] for U~Uo : 0.02. Generally, for 
dp/dx # 0 it is better to replace (25) by (27), which was derived similarly to (25), but 
taking into account the effect of a pressure gradient: 

u+ 1 1 I  pT i  lng+ ' i' - - - ~  ~ T1 . (27)  
k V ~ c l n 6  ~ ; 6~ T-~ 

Here  ~ = 1 1 . 6 ;  k = 0 . 4 ;  T~/~ w = 1 + 2Ax6~; Ax = (v/2Oua)~ z t  = Tw + ( d p / d x ) 6 x  
i s  t h e  f r i c t i o n  a t  t h e  b o u n d a r y  o f  t h e  v i s c o u s  s u b l a y e r .  I f  d p / d x  = 0, (27) c o i n c i d e s  w i t h  

( 2 5 ) .  I t  i s  s e e n  f rom (27) t h a t  f o r  d p / d x  # 0 ( * t  # ~w) t h e  s l o p e  o f  u+ i n  t h e  c o o r d i n a t e s  
I n  y+ i s  changed  by a f a c t o r  ~ [ ~ w w  and,  s i m i l a r l y ,  ~ i s  changed  by ~ t i m e s .  Thus ,  
for dp/dx > 0 (TI > Zw) the thickness of the viscous sublayer ~ decreases with respect t o  
the nongradient flow, while for dp/dx < 0 it increases. The slope of u + decreases for dp/ 
dx < 0 and increases for dp/dx > 0. 

+ + 
In Table i (columns 7-11) we compare the calculated profiles of uc(y ) with the theo- 

retical UT+(y +) taken from (27) in the region 1.3 < log y+ < 1.9, i.e., in the region of the 
"wall law" [i, 2]. Column ii gives the relative deviation (uc + -- UT+)/UT + in percent, with 
the numerator containing the error for log y+= 1.3 and the denominator containing the same 
quantity for 1.9. 

Columns 7-10 provides the values of Re x , Re , Re , and ~ = (6/Tw)'(dp/dx), for which 
the profiles uc+(y+ ) were calculated. It is seen that the agreement of the calculated values 

750 



U+ 

,,"b / / . , /  8 
2o , t / / -  . z z - ' - /  

~n i , K T / / /  \ I 8 

V I, f /~" ~,,~I ~ 

\;  

[ I 1 f I i I I i I I I I 1 1 I 

O f 2 3 

D i m e n s i o n l e s s  v e l o c i t y  p r o f i l e s  u + ( y  +)  . 

I 

Fig. 3. Curves i, 
2, and 3 are theoretical dependences; curves 4, 5, 6, 7, 8, 
9, and i0 are calculations. Curve i) u + = y+; 2) u + = 5.6' 
log y++ 4.9; 3) u + = 5.751og y+ + 5.5; i, 2, 3, 4, 5, 6) m = 
0; 7, 8) m = 0.Iiii; 9, i0) m =-0.04762; 4, 7, 9) Re = i0~; 
5, I0) Re = 105; 6) Re = 4o10S; 8) Re = 2-105 . 
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/0 
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/ / / / f /  . 
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i ~ i ) I i I 

Fig. 4. Dimensionless temperature profiles e+(y+). Curve i) 
e + = 4.21og y+ + 3.9; 2) 8 + = 4.71og y++ 4.6; 9) e + = 
y+Pr. Curves 3, 4-8, i0, Ii) calculations; i, 2-6) m = 0; 7, 
8) m = 0. iiii; i0, ii) m = -0.04762; 3, i0) Re = i0~; 4, 7) 
Re = 4.104; 5, ii) Re = 105; 8) Re = 2.105; 6) Re = 4-105 . 

uc+(y+) with (27) is quite good. Thus, the pressure gradient affects the velocity profile 
in the whole layer, and the velocity profiles are stratified in such a manner that in ~:he 

| W! ! lw 3 
region of the "wall law" u+(~A~)#u+(y +,Al) ifA~ r AI = (~/2pu).(dp/dx). In the external 
part of the layer u + * V2/Cf for y+ + ~, i.e., it also depends on dp/dx. 

In the transition region log Nu x depends linearly on log Rex. This allows one to ap- 
proximate results of calculating Nu x in the transition region for assigned m in the fo:r of 
a power law: Nu x = are s . The coefficients a and ~ depend on m and are given in Table i 
(column 12, with ~ in the numerator and log a in the denominator). 

As a whole, the results of calculations for u~ = cx m imply good qualitative agreement 
between the flow model treated here and semiempirical theoreis and experiments [I, 2, 1i2, 13]. 
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At the same time, this model enables one to take into account effectively real external 
parameters affecting the flow in a boundary layer, such as the intensityand scale of tur- 
bulence of a leaking flow, as well as to simultaneously perform calculations in the laminar, 
turbulent, and transition re~ioms of the flow. 

NOTATION 

e m 0.~ uiu i, specific turbulence energy; of, local resistance coefficient; St = Nu/ 
+ + 

Pc, local Stanton number; u = u/u,. y = yu.u -I, dimensionless velocity and distance; u. = 
u~ O.~cf; t, = qw(PC u.) -I dynamic velocity and temperature; 8 = (T-- Tw)t-~ , dimensionless p 
temperature; Re*, Re**, Reynolds numbers with eharacteristic dimensions 6" and 6**; m, 
exponent in expression for velocity of external flow u~ = cxm; B = 2m(m + I) -*, parameter 
of self-similar solutions; T,, friction at the boundary of the viscous sublayer; u~, 6~, 
velocity and thickness of the viscous sublayer; 6i, thickness of the thermal sublayer; 6, 4, 
thickness of the dynamic and thermal turbulent layers. 
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