EFFECT OF A PRESSURE GRADIENT AND OF EXTERNAL FLOW
TURBULENCE ON FLOW IN A BOUNDARY LAYER

G. S. Glushko, V. I. Bronshtein, UDC 532.517.4:536.25
and B. N. Yudaev

The effect of a pressure gradient and of external flow turbulence on the nature cf
flow in the laminar, transition, and turbulent regions is investigated.

1. The System of Equations

Turbulent flow of an incompressible fluid in a boundary layer is described by a system
of equations similar to that suggested by Kolmogorov [3] and investigated in detail by Glush-
ko and Solopov [5-10]. The system consists of the Reynolds, continuity, turbulence energy,
turbulence scaling, and heat—transfer equations:
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Here u, v, and T are the average velocities and temperature: v, and ®», are the turbulent kin-
ematic viscosity and thermal conductivity; D and w are the diffusion coefficient and -he dis-
sipation of the turbulence energy: L = /§§'is the integral scale of turbulence: and e :is the
specific turbulence energy. The terms on the left-hand side of the transport equations (1)~
(5) describe convective transport of the corresponding quantities. The corresponding terms
on the right-hand side of (4), (5) describe diffusion of turbulence energy across the layer,
energy input from the mean flow, and dissipation of pulsation energy. We point out that the

term w(3A/3y) inthe left-hand side of (3) combines the convective v(38A/9y) and the diffu-
sion terms.

2. Transport Coefficients

The turbulent viscosity and thermal conductivity depend on the quantities e, L, 3u/dy,
3T/3y, and de/dy and are written in the form [5-10]
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Here z and £ are the dimensionless velocity gradient::=(L/VE)-(aulay),and turbulence energy,

£ = (L/e)=(de/dy); H is an experimental function of the dimensionless distance to the wall:
s = y¢e7v; s;  30; s2 = 58,

f,- i {<0.75,
H(l) = lt—(t —0.752, i 0.75<<¢<1.95, ‘ (9)
1, if  1.95<f.

The diffusion coefficient of turbulence energy is

D=v(1+0.4£H(i));saz300. (10)
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The dissipation of turbulence energy is written as follows:
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The function y(r) takes into account that ¢ -+ 57/4 as r + 0 and w + 0.4r as r + w. Thus,

¢ = 0.4r for r > ry, while y = 5¢/4 + br? for r < ry; b = 0.2/r;, ry = 25¢/4, ¥ = L/e/v.
Moreover, the function ¢(t) in (5) can be approximated as follows: ¢(t) = 0 for 0 < t 5 0.5
and §(t) = 4(t ~ 0.5)% for 0.5 < t < 1.

3. Initial and Boundary Conditions

The system (1)-(5) was solved for the following boundary conditions:
y=0u=v=e=L=0;, T=T,. (12)

A power-law velocity distribution and a constant temperature were assigned at the exterior
Iimit of the boundary layer:

y-—>00; T—>To; e—>ew; L—>Lo; u—Us; Un = XM (13)

The intensity and turbulence scale of the outer flow were assigned at the initial point x(0)
of the boundary layer [Re,(Q) = 10*]:
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The energy and turbulence scale of the outer flow vary along x due to dissipation and con-
vection:
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The velocity distribution across the boundary layer at the initial point x(0) in the laminar
portion of flow was given for Rey = u,(0)x(0)/v = 10* in the form u = u,d'(m, n), where

#(m, n) is the self-similar Falkner—Skan solution [1, 2] for u, = cx™. The temperature,
energy, and turbulence scale distributions at the point x(0) are similarly given by

. 1
6 T e T ¢)' (m, ‘I]prg), € == €y (¢,)2, L = L“H (%) . (16)

4, ﬁethod of Solution and Results

The system of equations (1)—(5) was solved by the finite-difference method, first de-
termining the velocities u(x + Ax, y) and v(x + Ax, y) from (1) and (2) and then solving
the remaining equations. The step Ay varied, since in the viscous sublayer the velocity
profiles and those of other parameters vary quickly: u ~ ay + by®; 6 ~ y; L ~ y; e ~ y?, while
in the turbulent part the profiles of all parameters vary slowly: u - alog y + b. The cal-
culation showed that in the viscous sublayer there are 5-10 mesh points, while the number of
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mesh points in y varied with increasing layer thickness from 100 to 350.

Columns 11 and 12 of Table 2 provide the step Ax(m), corresponding to ARe, = Rey(m +
1)Ax/x, and the parameter P = Ax/AyZ; ., by means of which the stability range is usually
estimated. It is seen that the step Ax decreases with decreasing pressure-gradient parameter
m. For Ax = const, the calculation time increases proportionally to Rey. Increasing the
step KE, to retain the stability it is necessary to increase the step A¥pji,; in this case
it seems that for Re_ ~ 5.6 (m = Q) the width of the viscous sublayer becomes smaller than
the step of the mesh. This leads to a strong distortion of the velocity profiles and ta a
loss in stability and accuracy. It is possible that in this case one must replace the ve-
locity profile in the viscous sublayer by its asymptotic value or to choose stretching co~
ordinates taking into account the varying thickness of the viscous sublayer,

In Figs. 1 and 2 we compare results of a numerical calculation of the local resistance
. coefficient and of the Stantoun number for ue = cx®; m = 0; m = 0.1111; m = —0.04762; m =

— 0.08676 with theoretical solutions [1, 2] for the laminar portion and with semiempirical
dependences [1, 2, 12, 13] for the turbulent portion:

€ 1am= V 2m -2 @' (0)Re=%3, Stya= K (m, PryRe—05, an
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Ch iy = 0.0592Re=02, St & (Pro0.11 1/ G e PrT)) ] (18)
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The location of the transition point depends on the pressure-gradient parameter m, the in-
tensity u'(0)/uo, the scale L(0)/xo of the external flow turbulence, and the location of the
initial point Rex(0) in which external turbulence is introduced in the boundary layer, i.e.,
Re.y = Recr[m,'ET(O), L(0), ReX(O)]. Table 1 (columns 2, 3, and 4) provides the values of
(log Rex)cr, Re%., Re§§ at the initial point of sharp transition from the laminar to the

transition region, i.e., where cg starts increasing. In column 5 we give the segment length
ARe* = Regr — Re*(0) from the initial to the transition point. All values in Table 1 are
given for various m, but identical values of u'(0), L(Q), and Re,(0) according to (14). It
is seen that the quantity (Rey)., increases with increasing m.

Comparing Re%, of the transition (columm 3) with the theoretical value of Re% at the
point of stability loss of laminar self-similar flow (column 6), it is seen that for assigned
u'(0), L(0), and Rex(O) the transition occurs after the neutral point for m £ 0 and earlier
than it for m = 0.1111. To realize m = 0.1111 we calculated the variant with external turbu-
lence intemsity u'(0) = 0.005 decreased by a factor of 5. The calculation was extended to
Re, * 107 (Re* ® 4000), i.e., beyond the neutral point (Re = 3200), but the tramsition point
was not reached and the flow remained laminar.

To study the effect of thelocation of the imitial point Re,(0) for m = 0.1111 and axter—
nal turbulence parameters (14) we checked the variant with initial point ReX(O) = 3e10% in-
stead of Rex(O) = 10%. It is seen from Figs. 1 and 2 (curves 7) that the further from the
edge the plate is, or, stated differently, the closer to the neutral point the external ex-
citation is introduced, the earlier the transition to the turbulent region starts.

At the laminar portion the effect of external flow turbulence begins to practically af-
fect the values of c. and St at the edge of the portion (particularly for m < 0; Figs. 1
and 2). In the turbulent portion the values of cg(m) and St(m) increase with increasiag m
(Figs. 1 and 2), but it is not possible to separate the effects of pressure gradient and of
external flow turbulence, since the calculations were performed for the same values of ew(0)

and Lo(0).

For all m we calculated the Reynolds similarity parameter § = 25t/cg and compared it
with the theoretical dependences (17), (19), and (20). 1In Table 2 we provide the relative
deviation of the calculated S¢ and the theoretical S, similarity parameter in percents, € =
(SC-— S.)/St. For the laminar portion of the flow the error €, Z is given in column 6 of
Table 2" (in the numerator we give € at the beginning and in the denominator its value at the
edge of the laminar portion). The large deviations of S¢ from Sr at the beginning of the lam~
inar portion are explained by deviations of the initial temperature profile from the self-
similar one, in the middle of the laminar portion the error has decreased to ~5%, and then
at the end of the laminar portion (for m =—0.08676), € increases to 117 due to gradual devia-
tion from the laminar regime (Figs. 1 and 2).

747



T~ —

,/

o =% :

ac ~

! ] ~ \4
PN

_04 L " 1 ,- ! A I i " { " 1 s L L 1
40 2 4 6 & 40 z. 4 6 § 60 ipre

1

Fig. 1. Local resistance coefficient c.. Curves 1, 2, 3,
and 9 are for dependences of type (17), (18); curves 5, 6.
8, and 10 are calculations for"'(O) 0.025; Rep, = 500.
Curves 1, 5) m= 0; 3, 6, 7) m = 0.1111; 4, 8) m = —0.04762;
9, 10) m = -0.08676; 5, 6, 8, lO) the initial point Re(0) =
10%; 7) Re(0) = 3¢10%,
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Fig. 2. The local Stanton number St. Curves 1, 2, 3, 4, 8, and 10
are theoretical dependences of type (17), (18); curves 5, 6, 7, 9,
and 11 are calculations.Curves 1, 5) m = 0; 3, 6, 7) m = 0.1111;

8, 9) m = —0.04762; 10, 11) m = —0.08676. Curves 5, 6, 9, 11) the
initial point Re = 10“; 7) Re = 3-10“; 1, 3, 8, 10) Stygy =

K(m, Pr)Re™°-%; 2) St = O. 5qPr~2/’, 4) Sty = 0.5cg[Prp+ 0.11-
V(cg/2) (Pr — Prp) 17t

For the turbulent portion the values of ¢, 7% are given in column 7 of Table 2 for Eq.
(19) and in column 8 for Eq. (20). The beginning of the turbulent region appears in the nu-
merator of € and its end appears in the denominator. The following dependences were veri-
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Here A = —vuum(duw/dx)/T;; aj = 1+ (kPr/Prt)V(Tx/Tw)GI; i=1,2; k= 0.4.

Equation (19), derived [12] for Pry = 1 and linear dependence of T(u) in the viscous
sublayer, gives fairly good agreement with the calculations, except for the variant with
negative pressure gradient (m = 0.1111). Estimates show that in this case the thicknesses
S and A of the turbulent dynamic and thermal layers (column 9, Table 2) differ strongly.
This is why Eq. (20), explicitly taking into account the difference between the thicknesses
A and 6 of the thermal and dynamic layers and the difference between the thicknesses §; and
S, of the viscous dynamic and thermal sublayers, was suggested. In deriving (20, we applied

the gwo—lzyer scheme for the velocity 0 < 8, < 8, and the three-layer scheme for temperature
0 <6, <38, <A:;

u+=++A(+)2' T+:T+_1_u+pr-y<6-,4-_———v—'€i~p~§ (21)
1t =y (75 w " ’ 0T 2008 gy
u+:u1;+-1_l/3_1n(—y—);6,<y<6; 142487 (22)
k Tw 8 Tw
) i - l+_kPrl .Iy*
T Ti 4= Pr]/ N A 8, <y<by; (23)
T r T
w gy / St : »
PrTl Tw
Pr, /% . (Y
+ + T | — ,6 \<A
F=T+3y rw-n(6> PSS o

Here TT = T/Tgs ut = u/ugs T, = qu/Pcpuys u, = Viyg/e; 1. = 1y + (dp/dx) S, is the friction

at the boundary of the viscous sublayer of thickness §;. To include the effect of pressure
gradient on the thickness of the viscous sublayer §,, it was suggested [14] that (§,/v)-
¥T./p = o for o = 11.6. Equation (20) is valid for §, < 82, and putting § = A, §, = &,

T: = Tw, and dp/dx = 0 in (20), the well-known behavior of the Reynolds similarity parameter
[1, 2] is. obtained. ’ )

Figures 3 and 4 show the dimensionless velocity and temperature profiles compared with
semiempirical dependences for a viscous sublayer and logarithmic portion:

ut =561gyt +4.9; ut=>5.751gy” -+ 5.5; (25)
0 =4.71gyt —4.6; 8 =ui =a; a=11.86. (26)

Here the experimental dependence of gt is taken from [11] for u;/uo z 0.02. Generally, for
dp/dx # 0 it is better to replace (25) by (27), which was derived similarly to (25), but
taking into account the effect of a pressure gradient:

-

s L o (e Ay ) sty T
u_—k—l//T_;lny—,—(u-l—kl/%j]n(sl),(Sl O‘ . 27)
Here o = 11.6; k = 0.4; T/t = 1 + 2A16T; A, = (v/20u®)e(dp/dx); T, = Tw + (dp/dx)S;

is the friction at the boundary of the viscous sublayer. If dp/dx = 0, (27) coincides with
.(25). It is seen from (27) that for dp/dx # 0 (T, # Ty) the slope of ut in the coordinates
In yt+ is changed by a factor 7./t and, similarly, BT is changed by v1,/ty times. Thus,
for dp/dx > 0 (T, > Ty) the thickness of the viscous sublayer ST decreases with respect to
the nongradient flow, while for dp/dx < 0 it increases. The slope of ut decreases for dp/
dx < 0 and increases for dp/dx > O.

In Table 1 (columns 7-11) we compare the calculated profiles of ug(y+) with the theo-
retical uT+(y+) taken from (27) in the region 1.3 < log y' < 1.9, i.e., in the region of the
"wall law" [1, 2]. Column 11 gives the relative deviation (ugt — urt)/urt in percent, with
the numerator containing the error for log yt = 1.3 and the denominator containing the same
quantity for 1.9. ‘

* *%
Columns 7-10 provides the values of Reyx, Re , Re , and ¢ = (6/ty)*(dp/dx), for which
the profiles uct(yT) were calculated. It is seen that the agreement of the calculated values
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Fig. 3. Dimensionless velocity profiles u (y ). Curves 1,
2, and 3 are theoretical dependences; curves 4, 5, 6, 7, 8,
9, and 10 are calculations. Curve 1) ut = y+; 2) ut = 5,6°
log yt+4.9;3) ut = 5.75log y* + 5.5; 1, 2, 3, 4, 5, 6) m =
0; 7, 8) m = 0,1111; 9, 10) m = —0.04762; 4, 7, 9) Re = 10“;
5, 10) Re = 10%; 6) Re = 4¢10°%; 8) Re = 2¢10°.
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Fig. 4. Dimensionless tempegature profiles 8+(y ). Curve 1)
6t = 4.2log yt .+ 3.9; 2) 6" = 4.7log y* + 4.6; 9) ot =

ytPr. Curves 3, 4-8, 10, 11) calculations; 1, 2-6) m = 0; 7,
8 m = 0.1111; 10, 11) m = —0.04762; 3, 10) Re = 10%; 4, 7)
Re = 4¢10; 5, 11) Re = 10°; 8) Re = 2¢10%; 6) Re = 4e10°.

uct(y*) with (27) is quite good. Thus, the pPressure gradient affects the velocity pro:file
in the whole layer, and the velocity profiles are stratified in such a manner that in rhe
region of the "walllaw" ur(yt, A1) #ut(yF, A)) 1fA, #AY, Ay= (v/2pu®)¢(dp/dx). In theexternal
part of the layer ut - v2/C¢ for yt + =, i.e., it also depends on dp/dx.

In the transition region log Nuy depends linearly on log Rex. This allows one to ap-
proximate results of calculating Nuy in the transition region for assigned m in the form of

a power law: Nuy = aRe®. The coefficients ¢ and o depend on m and are given in Table 1
(column 12, with o in the numerator and loga in the denominator).

As a whole, the results of calculations for u, = cx® imply good qualitative agreement
between the flow model treated here and semiempirical theoreisg and experiments [1, 2, 12, 13].
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At the same time, this model enables one to take into account effectively real external
parameters affecting the flow in a boundary layer, such as the intensity and scale of tur-
bulence of a leaking flow, as well as to simultaneously perform calculations in the laminar,
turbulent, and transition regions of the flow.

NOTATION
e = O.SZu;ui, specific turbulence energy; f’ local resistance coefficient; St = Nu/

+
Pe, local Stanton number; u = u/u*, Yy = yu,v- ', dimensionless velocity and distance; u, =
Uo¥0.5¢c.5 t, = qw(pcpu*)'l, dynamic veloc1ty and temperature; 6 = (T — T )t“, dimensionless

temperature; Re¥*, Re**, Reynolds numbers with characteristic dlmen31ons 8% and §%%; m,
exponent in expression for velocity of external flow wu, = cx®™; B = 2m(m + 1)~*, parameter
of self-similar solutions; 1., friction at the boundary of the viscous sublayer; u,, §,,
velocity and thickness of the viscous sublayer; 8, thickness of the thermal sublayer; §, A,
thickness of the dynamic and thermal turbulent layers.
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